Author:
Li Haoran,Dong Zhikai,Ouyang Zuolin,Liu Bo,Yuan Wei,Yin Hongwu
Abstract
Ultrasonic waves, which constitute an active testing method, and acoustic emissions (AE), which can be applied as passive testing technology, can reveal rock damage processes in different ways. However, few studies so far have simultaneously adopted both, owing to the limitations of the experimental apparatus. However, the simultaneous use of both methods can improve the experimental efficiency and help to understand the rock damage evolution more comprehensively. In this study, concurrent experiments of ultrasonic waves and AE activities were carried out on rock salt under uniaxial compression, and the deformation characteristics were measured. The fracture process was divided into four stages with individual characteristics: the elastic compression stage, brittle-ductile transition with crack initiation, brittle-ductile transition with damage initiation, and plastic deformation and strain hardening stage. The ultrasonic wave velocity, crack density, ultrasonic wave amplitude, and attenuation coefficient were obtained to evaluate the damage process. The ultrasonic wave amplitude and the attenuation coefficient were recommended as forecast indicators, owing to their sensitivity and operability of measurement. The confining pressure had an inhibitory effect on crack expansion and on the AE activity, and the damage ultimate stress was defined and determined according to the AE activity and energy release characteristics. Four critical strengths of the crack initiation threshold stress, dilatancy boundary stress, short-term strength, and damage ultimate stress of rock salt were determined and then discussed. These results are valuable in evaluating rock damage and guiding the operation of underground salt caverns.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Hebei Province
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献