Novel Cross-View Human Action Model Recognition Based on the Powerful View-Invariant Features Technique

Author:

Mambou Sebastien,Krejcar Ondrej,Kuca Kamil,Selamat AliORCID

Abstract

One of the most important research topics nowadays is human action recognition, which is of significant interest to the computer vision and machine learning communities. Some of the factors that hamper it include changes in postures and shapes and the memory space and time required to gather, store, label, and process the pictures. During our research, we noted a considerable complexity to recognize human actions from different viewpoints, and this can be explained by the position and orientation of the viewer related to the position of the subject. We attempted to address this issue in this paper by learning different special view-invariant facets that are robust to view variations. Moreover, we focused on providing a solution to this challenge by exploring view-specific as well as view-shared facets utilizing a novel deep model called the sample-affinity matrix (SAM). These models can accurately determine the similarities among samples of videos in diverse angles of the camera and enable us to precisely fine-tune transfer between various views and learn more detailed shared facets found in cross-view action identification. Additionally, we proposed a novel view-invariant facets algorithm that enabled us to better comprehend the internal processes of our project. Using a series of experiments applied on INRIA Xmas Motion Acquisition Sequences (IXMAS) and the Northwestern–UCLA Multi-view Action 3D (NUMA) datasets, we were able to show that our technique performs much better than state-of-the-art techniques.

Publisher

MDPI AG

Subject

Computer Networks and Communications

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3