A Multi–Step Approach for Optically Active and Inactive Water Quality Parameter Estimation Using Deep Learning and Remote Sensing

Author:

Ahmed MehreenORCID,Mumtaz RafiaORCID,Anwar ZahidORCID,Shaukat Arslan,Arif OmarORCID,Shafait Faisal

Abstract

Water is a fundamental resource for human survival but the consumption of water that is unfit for drinking leads to serious diseases. Access to high–resolution satellite imagery provides an opportunity for innovation in the techniques used for water quality monitoring. With remote sensing, water quality parameter concentrations can be estimated based on the band combinations of the satellite images. In this study, a hybrid remote sensing and deep learning approach for forecasting multi–step parameter concentrations was investigated for the advancement of the traditionally employed water quality assessment techniques. Deep learning models, including a convolutional neural network (CNN), fully connected network (FCN), recurrent neural network (RNN), multi–layer perceptron (MLP), and long short term memory (LSTM), were evaluated for multi–step estimations of an optically active parameter, i.e., electric conductivity (EC), and an inactive parameter, i.e., dissolved oxygen (DO). The estimation of EC and DO concentrations can aid in the analysis of the levels of impurities and oxygen in water. The proposed solution will provide information on the necessary changes needed in water management techniques for the betterment of society. EC and DO parameters were taken as independent variables with dependent parameters, i.e., pH, turbidity, total dissolved solids, chlorophyll–α, Secchi disk depth, and land surface temperature, which were extracted from Landsat–8 data from the years 2014–2021 for the Rawal stream network. The bi–directional LSTM obtained better results with a root mean square error (RMSE) of 0.2 (mg/L) for DO and an RMSE of 281.741 (μS/cm) for EC, respectively. The results suggest that a hybrid approach provides efficient and accurate results in feature extraction and evaluation of multi–step forecast of both optically active and inactive water quality parameters.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3