The Efficiency of Hybrid Intelligent Models in Predicting Fiber-Reinforced Polymer Concrete Interfacial-Bond Strength

Author:

Barkhordari Mohammad SadeghORCID,Armaghani Danial JahedORCID,Sabri Mohanad Muayad SabriORCID,Ulrikh Dmitrii VladimirovichORCID,Ahmad MahmoodORCID

Abstract

Fiber-reinforced polymer (FRP) has several benefits, in addition to excellent tensile strength and low self-weight, including corrosion resistance, high durability, and easy construction, making it among the most optimum options for concrete structure restoration. The bond behavior of the FRP-concrete (FRPC) interface, on the other hand, is extremely intricate, making the bond strength challenging to estimate. As a result, a robust modeling framework is necessary. In this paper, data-driven hybrid models are developed by combining state-of-the-art population-based algorithms (bald eagle search (BES), dynamic fitness distance balance-manta ray foraging optimization (dFDB-MRFO), RUNge Kutta optimizer (RUN)) and artificial neural networks (ANN) named “BES-ANN”, “dFDB-MRFO -ANN”, and “RUN-ANN” to estimate the FRPC interfacial-bond strength accurately. The efficacy of these models in predicting bond strength is examined using an extensive database of 969 experimental samples. Compared to the BES-ANN and dFDB-MRFO models, the RUN-ANN model better estimates the interfacial-bond strength. In addition, the SHapley Additive Explanations (SHAP) approach is used to help interpret the best model and examine how the features influence the model’s outcome. Among the studied hybrid models, the RUN-ANN algorithm is the most accurate model with the highest coefficient of determination (R2 = 92%), least mean absolute error (0.078), and least coefficient of variation (18.6%). The RUN-ANN algorithm also outperformed mechanics-based models. Based on SHAP and sensitivity analysis method, the FRP bond length and width contribute more to the final prediction results.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3