Strengthening Effect of Short Carbon Fiber Content and Length on Mechanical Properties of Extrusion-Based Printed Alumina Ceramics

Author:

Wang Haihua,Wu Jian,Zheng Hai,Tang Mingliang,Shen Xiaodong

Abstract

Extrusion-based ceramic printing is fast and convenient, but the green body strength is too low, and the application prospect is not high. An extrusion-based printing method of alumina ceramics toughened by short carbon fiber is reported in this paper. The bending strength and fracture toughness of 3D-printed alumina ceramics were improved by adding short carbon fiber. The toughening effects of four carbon fiber lengths (100 μm, 300 μm, 700 μm, and 1000 μm) and six carbon fiber contents (1, 2, 3, 4, 5, and 6 wt%) on ceramics were compared. The experimental results show that when the length of carbon fiber is 700 μm, and carbon fiber is 5 wt%, the toughening effect of fiber is the best, and the uniform distribution of fiber is an effective toughening method. Its bending strength reaches 33.426 ± 1.027 MPa, and its fracture toughness reaches 4.53 ± 0.46 MPa·m1/2. Compared with extrusion-based printed alumina ceramics without fiber, the bending strength and fracture toughness increase by 55.38% and 47.56%, respectively.

Publisher

MDPI AG

Subject

General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3