Author:
Wang Haihua,Wu Jian,Zheng Hai,Tang Mingliang,Shen Xiaodong
Abstract
Extrusion-based ceramic printing is fast and convenient, but the green body strength is too low, and the application prospect is not high. An extrusion-based printing method of alumina ceramics toughened by short carbon fiber is reported in this paper. The bending strength and fracture toughness of 3D-printed alumina ceramics were improved by adding short carbon fiber. The toughening effects of four carbon fiber lengths (100 μm, 300 μm, 700 μm, and 1000 μm) and six carbon fiber contents (1, 2, 3, 4, 5, and 6 wt%) on ceramics were compared. The experimental results show that when the length of carbon fiber is 700 μm, and carbon fiber is 5 wt%, the toughening effect of fiber is the best, and the uniform distribution of fiber is an effective toughening method. Its bending strength reaches 33.426 ± 1.027 MPa, and its fracture toughness reaches 4.53 ± 0.46 MPa·m1/2. Compared with extrusion-based printed alumina ceramics without fiber, the bending strength and fracture toughness increase by 55.38% and 47.56%, respectively.
Subject
General Materials Science
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献