Shock-Induced Energy Release Performances of PTFE/Al/Oxide

Author:

Yuan Ying,Shi Dongfang,He Suo,Guo Huanguo,Zheng YuanfengORCID,Zhang Yong,Wang HaifuORCID

Abstract

In recent years, polytetrafluoroethylene (PTFE)/aluminum (Al) energetic materials with high-energy density have attracted extensive attention and have broad application prospects, but the low-energy release efficiency restricts their application. In this paper, oxide, bismuth trioxide (Bi2O3) or molybdenum trioxide (MoO3) are introduced into PTFE/Al to improve the chemical reaction performance of energetic materials. The pressurization characteristics of PTFE/Al/oxide as pressure generators are compared and analyzed. The experiments show that the significantly optimized quasi-static pressure peak, impulse, and energy release efficiency (0.162 MPa, 10.177 s·kPa, and 0.74) are achieved for PTFE/Al by adding 30 wt.% Bi2O3. On the other hand, the optimal parameter obtained by adding 10% MoO3 is 0.147 MPa, 9.184 s·kPa, and 0.68. Further, the mechanism of enhancing the energy release performance of PTFE/Al through oxide is revealed. The mechanism analysis shows that the shock-induced energy release performance of PTFE/Al energetic material is affected by the intensity of the shock wave and the chemical reaction extent of the material under the corresponding intensity. The oxide to PTFE/Al increases the intensity of the shock wave in the material, but the chemical reaction extent of the material decreases under the corresponding intensity.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3