A Domain-Adaptive Tree-Crown Detection and Counting Method Based on Cascade Region Proposal Networks

Author:

Wang Yisha12ORCID,Yang Gang12ORCID,Lu Hao12ORCID

Affiliation:

1. School of Information Science and Technology, Beijing Forestry University, Beijing 100083, China

2. Engineering Research Center for Forestry-Oriented Intelligent Information Processing of National Forestry and Grassland Administration, Beijing 100083, China

Abstract

Rapid and accurate tree-crown detection is significant to forestry management and precision forestry. In the past few decades, the development and maturity of remote sensing technology has created more convenience for tree-crown detection and planting management. However, the variability of the data source leads to significant differences between feature distributions, bringing great challenges for traditional deep-learning-based methods on cross-regional detection. Moreover, compared with other tasks, tree-crown detection has the problems of a poor abundance of objects, an overwhelming number of easy samples and the existence of a quantity of impervious background similar to the tree crown, which make it difficult for the classifier to learn discriminative features. To solve these problems, we apply domain adaptation (DA) to tree-crown detection and propose a DA cascade tree-crown detection framework with multiple region proposal networks, dubbed CAS-DA, realizing cross-regional tree-crown detection and counting from multiple-source remote sensing images. The essence of the multiple region proposal networks in CAS-DA is obtaining the multilevel features and enhancing deeper label classifiers gradually by filtering simple samples of source domain at an early stage. Then, the cascade structure is integrated with a DA object detector and the end-to-end training is realized through the proposed cascade loss function. Moreover, a filtering strategy based on the planting rules of tree crowns is designed and applied to filter wrongly detected trees by CAS-DA. We verify the effectiveness of our method in two different domain shift scenarios, including adaptation between satellite and drone images and cross-satellite adaptation. The results show that, compared to the existing DA methods, our method achieves the best average F1-score in all adaptions. It is also found that the performance between satellite and drone images is significantly worse than that between different satellite images, with average F1-scores of 68.95% and 88.83%, respectively. Nevertheless, there is an improvement of 11.88%~40.00% in the former, which is greater than 0.50%~5.02% in the latter. The above results prove that in tree-crown detection, it is more effective for the DA detector to improve the detection performance on the source domain than to diminish the domain shift alone, especially when a large domain shift exists.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

Reference59 articles.

1. Tree crown delineation and tree species classification in boreal forests using hyperspectral and ALS data;Dalponte;Remote Sens. Environ.,2014

2. Automatic detection of individual oil palm trees from UAV images using HOG features and an SVM classifier;Wang;Int. J. Remote Sens.,2019

3. A comparative analysis of high spatial resolution IKONOS and WorldView-2 imagery for mapping urban tree species;Pu;Remote Sens. Environ.,2012

4. Multi-class predictive template for tree crown detection;Hung;ISPRS J. Photogramm. Remote Sens.,2012

5. Wang, X., Li, L., Ye, W., Long, M., and Wang, J. (February, January 27). Transferable Attention for Domain Adaptation. Proceedings of the AAAI Conference on Artificial Intelligence, Honolulu, HI, USA.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3