Ship Trajectory Prediction Based on Bi-LSTM Using Spectral-Clustered AIS Data

Author:

Park JinwanORCID,Jeong JungsikORCID,Park YoungsooORCID

Abstract

According to the statistics of maritime accidents, most collision accidents have been caused by human factors. In an encounter situation, the prediction of ship’s trajectory is a good way to notice the intention of the other ship. This paper proposes a methodology for predicting the ship’s trajectory that can be used for an intelligent collision avoidance algorithm at sea. To improve the prediction performance, the density-based spatial clustering of applications with noise (DBSCAN) has been used to recognize the pattern of the ship trajectory. Since the DBSCAN is a clustering algorithm based on the density of data points, it has limitations in clustering the trajectories with nonlinear curves. Thus, we applied the spectral clustering method that can reflect a similarity between individual trajectories. The similarity measured by the longest common subsequence (LCSS) distance. Based on the clustering results, the prediction model of ship trajectory was developed using the bidirectional long short-term memory (Bi-LSTM). Moreover, the performance of the proposed model was compared with that of the long short-term memory (LSTM) model and the gated recurrent unit (GRU) model. The input data was obtained by preprocessing techniques such as filtering, grouping, and interpolation of the automatic identification system (AIS) data. As a result of the experiment, the prediction accuracy of Bi-LSTM was found to be the highest compared to that of LSTM and GRU.

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Reference42 articles.

1. KMST (Korean Maritime Safety Tribunal) 2020 Annual Report of Marine Accident Statistics https://www.kmst.go.kr

2. Symbolic and Pictorial Displays for Submarine Control

3. A practical calculation method of ship maneuvering motion

4. Handbook of Marine Craft Hydrodynamics and Motion Control;Fossen,2011

Cited by 66 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3