Future Changes in Built Environment Risk to Coastal Flooding, Permanent Inundation and Coastal Erosion Hazards

Author:

Stephens Scott A.ORCID,Paulik RyanORCID,Reeve Glen,Wadhwa Sanjay,Popovich Ben,Shand Tom,Haughey Rebecca

Abstract

Sea-level rise will cause erosion of land, deeper and increasingly frequent flooding and will eventually permanently inundate low-elevation land, forcing the adaptation of seaside communities to avoid or reduce risk. To inform adaptation planning, we quantified the effects of incremental relative sea-level rise (RSLR) on exposed land area, number and replacement value of buildings within Tauranga Harbour, New Zealand. The assessment compared three coastal hazards: flooding, permanent inundation and erosion. Increasingly frequent coastal flooding will be the dominant trigger for adaptation in Tauranga. In the absence of adaptation, coastal flooding, recurring at least once every 5 years on average, will overtake erosion as the dominant coastal hazard after about 0.15–0.2 m RSLR, which is likely to occur between the years 2038–2062 in New Zealand and will rapidly escalate in frequency and consequence thereafter. Coastal erosion will remain the dominant hazard for the relatively-few properties on high-elevation coastal cliffs. It will take 0.8 m more RSLR for permanent inundation to reach similar impact thresholds to coastal flooding, in terms of the number and value of buildings exposed. For buildings currently within the mapped 1% annual exceedance probability (AEP) zone, the flooding frequency will transition to 20% AEP within 2–3 decades depending on the RSLR rate, requiring prior adaptive action. We also compared the performance of simple static-planar versus complex dynamic models for assessing coastal flooding exposure. Use of the static-planar model could result in sea level thresholds being reached 15–45 years earlier than planned for in this case. This is compelling evidence to use dynamic models to support adaptation planning.

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3