Laboratory Quantification of the Relative Contribution of Staghorn Coral Skeletons to the Total Wave-Energy Dissipation Provided by an Artificial Coral Reef

Author:

Ghiasian MohammadORCID,Carrick Jane,Bisson Claire,Haus Brian K.,Baker Andrew C.,Lirman Diego,Rhode-Barbarigos LandolfORCID

Abstract

Coral reefs function as submerged breakwaters providing wave mitigation and flood-reduction benefits for coastal communities. Although the wave-reducing capacity of reefs has been associated with wave breaking and friction, studies quantifying the relative contribution by corals are lacking. To fill this gap, a series of experiments was conducted on a trapezoidal artificial reef model with and without fragments of staghorn coral skeletons attached. The experiments were performed at the University of Miami’s Surge-Structure-Atmosphere-Interaction (SUSTAIN) Facility, a large-scale wind/wave tank, where the influence of coral skeletons on wave reduction under different wave and depth conditions was quantified through water level and wave measurements before and after the reef model. Coral skeletons reduce wave transmission and increase wave-energy dissipation, with the amount depending on the hydrodynamic conditions and relative geometrical characteristics of the reef. The trapezoidal artificial coral reef model was found to reduce up to 98% of the wave energy with the coral contribution estimated to be up to 56% of the total wave-energy dissipation. Depending on the conditions, coral skeletons can thus enhance significantly, through friction, the wave-reducing capability of a reef.

Funder

University of Miami’s U-LINK Program

National Fish and Wildlife Foundation

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3