Auxiliary Equipment Detection in Marine Engine Rooms Based on Deep Learning Model

Author:

Qi JiahaoORCID,Zhang Jundong,Meng Qingyan

Abstract

In the intelligent perception of the marine engine room, visual identification of auxiliary equipment is the prerequisite for defect recognition and anomaly detection. To improve the detection accuracy, this study presents an auxiliary equipment detector in the cabin based on a deep learning model. Owing to the compact layout of pipeline networks and the large disparity in the equipment scales, we initially adopted RetinaNet as the basic framework, and introduced the single channel plain architecture RepVGG as the feature extraction network to simplify the complexity and improve realtime detection. Secondly, the Neighbor Erasing and Transferring Mechanism (NETM) was applied in the feature pyramid to deal with more complicated scale variations. Then, the complete IoU (CIoU) regression loss function was used instead of smooth L1, and the DIoU Soft-NMS mechanism was proposed to alleviate the misdetection in congested cabins. Further, comparison experiments and ablation experiments were performed on the auxiliary equipment in a marine engine room (AEMER) dataset to validate the efficacy of these strategies on the model performance boost. Specifically, our model can correctly detect 93.44% of coolers, 100.00% of diesel engines, 60.26% of meters, 95.30% of pumps, 55.01% of reservoirs, 97.68% of oil separators, and 74.37% of valves in a practical cabin.

Funder

National Natural Science Foundation of China

Research on Intelligent Ship Testing and Verification

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3