SLAB51 Multi-Strain Probiotic Formula Increases Oxygenation in Oxygen-Treated Preterm Infants

Author:

Baldassarre Maria Elisabetta1ORCID,Marazzato Massimiliano2,Pensa Marta1,Loverro Maria Teresa1ORCID,Quercia Michele1,Lombardi Francesca3ORCID,Schettini Federico4ORCID,Laforgia Nicola1ORCID

Affiliation:

1. Section of Neonatology and Neonatal Intensive Care Unit, Department of Interdisciplinary Medicine, “Aldo Moro” University of Bari, 70121 Bari, Italy

2. Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Roma, Italy

3. Department of Life, Health & Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy

4. Neonatology and Neonatal Intensive Care, SS. Annunziata Hospital, 80058 Taranto, Italy

Abstract

Preterm infants are at risk of hypoxia and hyperoxia because of the immaturity of their respiratory and antioxidant systems, linked to increased morbidity and mortality. This study aimed to evaluate the efficacy of a single administration of the SLAB51 probiotic formula in improving oxygenation in respiratory distress syndrome (RDS)-affected premature babies, thus reducing their need for oxygen administration. Additionally, the capability of SLAB51 in activating the factor-erythroid 2-related factor (Nrf2) responsible for antioxidant responses was evaluated in vitro. In two groups of oxygen-treated preterm infants with similar SaO2 values, SLAB51 or a placebo was given. After two hours, the SLAB51-treated group showed a significant increase in SaO2 levels and the SaO2/FiO2 ratio, while the control group showed no changes. Significantly increased Nrf2 activation was observed in intestinal epithelial cells (IECs) exposed to SLAB51 lysates. In preterm infants, we confirmed the previously observed SLAB51’s “oxygen-sparing effect”, permitting an improvement in SaO2 levels. We also provided evidence of SLAB51’s potential to enhance antioxidant responses, thus counteracting the detrimental effects of hyperoxia. Although further studies are needed to support our data, SLAB51 represents a promising approach to managing preterm infants requiring oxygen supplementation.

Publisher

MDPI AG

Subject

Food Science,Nutrition and Dietetics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3