ARTD-Net: Anchor-Free Based Recyclable Trash Detection Net Using Edgeless Module

Author:

Kang BoSeon1ORCID,Jeong Chang-Sung2

Affiliation:

1. Visual Information Processing, Korea University, Seoul 02841, Republic of Korea

2. Department of Electrical Engineering, Korea University, Seoul 02841, Republic of Korea

Abstract

Due to the sharp increase in household waste, its separate collection is essential in order to reduce the huge amount of household waste, since it is difficult to recycle trash without separate collection. However, since it is costly and time-consuming to separate trash manually, it is crucial to develop an automatic system for separate collection using deep learning and computer vision. In this paper, we propose two Anchor-free-based Recyclable Trash Detection Networks (ARTD-Net) which can recognize overlapped multiple wastes of different types efficiently by using edgeless modules: ARTD-Net1 and ARTD-Net2. The former is an anchor-free based one-stage deep learning model which consists of three modules: centralized feature extraction, multiscale feature extraction and prediction. The centralized feature extraction module in backbone architecture focuses on extracting features around the center of the input image to improve detection accuracy. The multiscale feature extraction module provides feature maps of different scales through bottom-up and top-down pathways. The prediction module improves classification accuracy of multiple objects based on edge weights adjustments for each instance. The latter is an anchor-free based multi-stage deep learning model which can efficiently finds each of waste regions by additionally exploiting region proposal network and RoIAlign. It sequentially performs classification and regression to improve accuracy. Therefore, ARTD-Net2 is more accurate than ARTD-Net1, while ARTD-Net1 is faster than ARTD-Net2. We shall show that our proposed ARTD-Net1 and ARTD-Net2 methods achieve competitive performance in mean average precision and F1 score compared to other deep learning models. The existing datasets have several problems that do not deal with the important class of wastes produced commonly in the real world, and they also do not consider the complex arrangement of multiple wastes with different types. Moreover, most of the existing datasets have an insufficient number of images with low resolution. We shall present a new recyclables dataset which is composed of a large number of high-resolution waste images with additional essential classes. We shall show that waste detection performance is improved by providing various images with the complex arrangement of overlapped multiple wastes with different types.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3