Improving the Performance of Micro-Textured Cutting Tools in Dry Milling of Ti-6Al-4V Alloys

Author:

Wu Ze,Xing Youqiang,Chen Jiansong

Abstract

Micro-textured tools were fabricated by making textures on rake faces and filling them with molybdenum disulfide. Dry milling of Ti-6Al-4V alloys was carried out with the micro-textured tools and conventional tools for comparison. Results showed that micro-textured tools can reduce the resultant cutting forces, cutting temperatures, and power consumption by approximately 15%, 10%, and 5%, respectively. Meanwhile, the developed tools can improve tool lives by approximately 20–25%. The radial width of cut, the cutting speed, and the axial depth of cut all had statistical and physical effects on the energy consumption per unit of volume in dry milling of Ti-6Al-4V alloys, while the feed per tooth seemed to have no significant effect. The mechanism for improved performance of micro-textured tools can be mainly interpreted as their self-lubricating function.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3