Noble Metallic Pyramidal Substrate for Surface-Enhanced Raman Scattering Detection of Plasmid DNA Based on Template Stripping Method

Author:

Wu WenjieORCID,Li Rui,Chen Maodu,Li Jiankang,Zhan Weishen,Jing Zhenguo,Pang Lu

Abstract

In this paper, a new method for manufacturing flexible and repeatable sensors made of silicon solar cells is reported. The method involves depositing the noble metal film directly onto the Si template and stripping out the substrate with a pyramid morphology by using an adhesive polymer. In order to evaluate the enhancement ability of the substrate, Rhodamine 6G (R6G) were used as surface-enhanced Raman scattering (SERS) probe molecules, and the results showed a high sensitivity and stability. The limit of detection was down to 10−12 M for R6G. The finite-difference time domain (FDTD) was used to reflect the distribution of the electromagnetic field, and the electric field was greatly enhanced on the surface of the inverted pyramidal substrate, especially in pits. The mechanism of Raman enhancement of two types of pyramidal SERS substrate, before and after stripping of the noble metal film, is discussed. By detecting low concentrations of plasmid DNA, the identification of seven characteristic peaks was successfully realized using a noble metallic pyramidal substrate.

Funder

National Natural Science Foundation of China

Liaoning Revitalization Talents Program

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3