Dielectrophoresis as a Tool to Reveal the Potential Role of Ion Channels and Early Electrophysiological Changes in Osteoarthritis

Author:

Abdallat RulaORCID,Kruchek Emily,Matta CsabaORCID,Lewis RebeccaORCID,Labeed Fatima H.

Abstract

Diseases such as osteoarthritis (OA) are commonly characterized at the molecular scale by gene expression and subsequent protein production; likewise, the effects of pharmaceutical interventions are typically characterized by the effects of molecular interactions. However, these phenomena are usually preceded by numerous precursor steps, many of which involve significant ion influx or efflux. As a consequence, rapid assessment of cell electrophysiology could play a significant role in unravelling the mechanisms underlying drug interactions and progression of diseases, such as OA. In this study, we used dielectrophoresis (DEP), a technique that allows rapid, label-free determination of the dielectric parameters to assess the role of potassium ions on the dielectric characteristics of chondrocytes, and to investigate the electrophysiological differences between healthy chondrocytes and those from an in vitro arthritic disease model. Our results showed that DEP was able to detect a significant decrease in membrane conductance (6191 ± 738 vs. 8571 ± 1010 S/m2), membrane capacitance (10.3 ± 1.47 vs. 14.5 ± 0.01 mF/m2), and whole cell capacitance (5.4 ± 0.7 vs. 7.5 ± 0.3 pF) following inhibition of potassium channels using 10 mM tetraethyl ammonium, compared to untreated healthy chondrocytes. Moreover, cells from the OA model had a different response to DEP force in comparison to healthy cells; this was seen in terms of both a decreased membrane conductivity (782 S/m2 vs. 1139 S/m2) and a higher whole cell capacitance (9.58 ± 3.4 vs. 3.7 ± 1.3 pF). The results show that DEP offers a high throughput method, capable of detecting changes in membrane electrophysiological properties and differences between disease states.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3