Improving SDG Classification Precision Using Combinatorial Fusion

Author:

Hsu D. Frank,LaFleur Marcelo T.,Orazbek IlyasORCID

Abstract

Combinatorial fusion algorithm (CFA) is a machine learning and artificial intelligence (ML/AI) framework for combining multiple scoring systems using the rank-score characteristic (RSC) function and cognitive diversity (CD). When measuring the relevance of a publication or document with respect to the 17 Sustainable Development Goals (SDGs) of the United Nations, a classification scheme is used. However, this classification process is a challenging task due to the overlapping goals and contextual differences of those diverse SDGs. In this paper, we use CFA to combine a topic model classifier (Model A) and a semantic link classifier (Model B) to improve the precision of the classification process. We characterize and analyze each of the individual models using the RSC function and CD between Models A and B. We evaluate the classification results from combining the models using a score combination and a rank combination, when compared to the results obtained from human experts. In summary, we demonstrate that the combination of Models A and B can improve classification precision only if these individual models perform well and are diverse.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference34 articles.

1. An overview of topic modeling and its current applications in bioinformatics

2. Probabilistic topic models

3. Combinatorial Fusion Analysis: Methods and Practices of Combining Multiple Scoring Systems;Hsu,2006

4. Methods of Data Fusion in Information Retrieval: Rank vs. Score Combination;Hsu,2002

5. Feature Selection and Combination Criteria for Improving Accuracy in Protein Structure Prediction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3