A Forest Fire Susceptibility Modeling Approach Based on Light Gradient Boosting Machine Algorithm

Author:

Sun YanyanORCID,Zhang Fuquan,Lin HaifengORCID,Xu ShuwenORCID

Abstract

A forest fire susceptibility map generated with the fire susceptibility model is the basis of fire prevention resource allocation. A more reliable susceptibility map helps improve the effectiveness of resource allocation. Thus, further improving the prediction accuracy is always the goal of fire susceptibility modeling. This paper developed a forest fire susceptibility model based on an ensemble learning method, namely light gradient boosting machine (LightGBM), to produce an accurate fire susceptibility map. In the modeling, a subtropical national forest park in the Jiangsu province of China was used as the case study area. We collected and selected eight variables from the fire occurrence driving factors for modeling based on correlation analysis. These variables are from topographic factors, climatic factors, human activity factors, and vegetation factors. For comparative analysis, another two popular modeling methods, namely logistic regression (LR) and random forest (RF) were also applied to construct the fire susceptibility models. The results show that temperature was the main driving factor of fire in the area. In the produced fire susceptibility map, the extremely high and high susceptibility areas that were classified by LR, RF, and LightGBM were 5.82%, 18.61%, and 19%, respectively. The F1-score of the LightGBM model is higher than the LR and RF models. The accuracy of the model of LightGBM, RF, and LR is 88.8%, 84.8%, and 82.6%, respectively. The area under the curve (AUC) of them is 0.935, 0.918, and 0.868, respectively. The introduced ensemble learning method shows better ability on performance evaluation metrics.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference89 articles.

1. Analysis of Chinese fire statistics during the period 1997–2017

2. The current trends and challenging situations of fire incident statistics;Rahim;Malays. J. Forensic Sci.,2015

3. Focus on Trends in Fires and Fire-Related Fatalities;Bryant,2017

4. Satellite Remote Sensing Contributions to Wildland Fire Science and Management

5. Risk assessment for wildland fire aerial detection patrol route planning in Ontario, Canada

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3