Identification of the Spring Green-Up Date Derived from Satellite-Based Vegetation Index over a Heterogeneous Ecoregion

Author:

Wu Jianping,Chang Zhongbing,Su Yongxian,Zhang Chaoqun,Wu Xiong,Bi Chongyuan,Liu LiyangORCID,Yang Xueqin,Li Xueyan

Abstract

Multiple methods have been developed to identify the transition threshold from the reconstructed satellite-derived normalized difference vegetation indices (NDVI) time series and to determine the inflection point corresponding to a certain phenology phase (e.g., the spring green-up date (GUD)). We address an issue that large uncertainties might occur in the inflection point identification of spring GUD using the traditional satellite-based methods since different vegetation types exhibit asynchronous phenological phases over a heterogeneous ecoregion. We tentatively developed a Maximum-derivative-based (MDB) method and provided inter-comparisons with two traditional methods to detect the turning points by the reconstructed time-series data of NDVI for identifying the GUD against long-term observations from the sites covered by a mixture of deciduous forest and herbages in the Pan European Phenology network. Results showed that higher annual mean temperature would advance the spring GUD, but the sensitive magnitudes differed depending on the vegetation type. Therefore, the asynchronization of phenological phases among different vegetation types would be more pronounced in the context of global warming. We found that the MDB method outperforms two other traditional methods (the 0.5-threshold-based method and the maximum-ratio-based method) in predicting the GUD of the subsequent-green-up vegetation type when compared with ground observation, especially at sites with observed GUD of herbages earlier than deciduous forest, while the Maximum-ratio-based method showed better performance for identifying GUDs of the foremost-green-up vegetation type. Although the new method improved in our study is not universally applicable on a global scale, our results, however, highlight the limitation of current inflection point identify algorithms in predicting the GUD derived from satellite-based vegetation indices datasets in an ecoregion with heterogeneous vegetation types and asynchronous phenological phases, which makes it helpful for us to better predict plant phenology on an ecoregion-scale under future ongoing climate warming.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Guangdong

‘GDAS’ project of Science and Technology Development

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3