Stacking of Canopy Spectral Reflectance from Multiple Growth Stages Improves Grain Yield Prediction under Full and Limited Irrigation in Wheat

Author:

Hassan Muhammad AdeelORCID,Fei ShuaipengORCID,Li Lei,Jin Yirong,Liu Peng,Rasheed AwaisORCID,Shawai Rabiu Sani,Zhang Liang,Ma Aimin,Xiao Yonggui,He Zhonghu

Abstract

Grain yield (GY) prediction for wheat based on canopy spectral reflectance can improve selection efficiency in breeding programs. Time-series spectral information from different growth stages such as flowering to maturity is considered to have high accuracy in predicting GY and combining this information from multiple growth stages could effectively improve prediction accuracy. For this, 207 wheat cultivars and breeding lines were grown in full and limited irrigation treatments, and their canopy spectral reflectance was measured at the flowering, early, middle, and late grain fill stages. The potential of temporal spectral information at multiple growth stages for GY prediction was evaluated by a new method based on stacking the multiple growth stages data. Twenty VIs derived from spectral reflectance were used as the input feature of a support vector regression (SVR) to predict GY at each growth stage. The predicted GY values at multiple growth stages were trained by multiple linear regression (MLR) to establish a second-level prediction model. Results suggested that the prediction accuracy (R2) of VIs data from single growth stages ranged from 0.60 to 0.66 and 0.35 to 0.42 in the full and limited irrigation treatments, respectively. The prediction accuracy was increased by an average of 0.06, 0.07, and 0.07 after stacking the VIs of two, three, and four growth stages, respectively, under full irrigation. Similarly, under limited irrigation, the prediction accuracy was increased by 0.03, 0.04, and 0.04 by stacking the VIs of two, three, and four growth stages, respectively. Stacking of VIs of multiple important growth stages can increase the accuracy of GY prediction and application of a stable stacking model could increase the usefulness of data obtained from different phenotyping platforms.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3