Abstract
Clustering of multi-source geospatial big data provides opportunities to comprehensively describe urban structures. Most existing studies focus only on the clustering of a single type of geospatial big data, which leads to biased results. Although multi-view subspace clustering methods are advantageous for fusing multi-source geospatial big data, exploiting a robust shared subspace in high-dimensional, non-uniform, and noisy geospatial big data remains a challenge. Therefore, we developed a method with adaptive graphs to constrain multi-view subspace clustering of multi-source geospatial big data (agc2msc). First, for each type of data, high-dimensional and noisy original features were projected into a low-dimensional latent representation using autoencoder networks. Then, adaptive graph constraints were used to fuse the latent representations of multi-source data into a shared subspace representation, which preserved the neighboring relationships of data points. Finally, the shared subspace representation was used to obtain the clustering results by employing a spectral clustering algorithm. Experiments on four benchmark datasets showed that agc2msc outperformed nine state-of-the-art methods. agc2msc was applied to infer urban land use types in Beijing using the taxi GPS trajectory, bus smart card transaction, and points of interest datasets. The clustering results may provide useful calibration and reference for urban planning.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Hunan Province
Subject
General Earth and Planetary Sciences
Reference63 articles.
1. Land-Use Classification Using Taxi GPS Traces
2. Discovering functional zones using bus smart card data and points of interest in Beijing;Long,2015
3. A new insight into land use classification based on aggregated mobile phone data
4. Online clustering for topic detection in social data streams;Comito;Proceedings of the IEEE 28th International Conference on Tools with Artificial Intelligence,2016
5. Sensing spatial distribution of urban land use by integrating points-of-interest and Google Word2Vec model
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献