Integration of Multi-GNSS PPP-RTK/INS/Vision with a Cascading Kalman Filter for Vehicle Navigation in Urban Areas

Author:

Gu ShengfengORCID,Dai ChunqiORCID,Mao FeiyuORCID,Fang Wentao

Abstract

Precise point positioning (PPP) has received much attention in recent years for its low cost, high accuracy, and global coverage. Nowadays, PPP with ambiguity resolution and atmospheric augmentation is widely regarded as PPP-RTK (real-time kinematic), which weakens the influence of the long convergence time in PPP and regional service coverage in RTK. However, PPP-RTK cannot work well in urban areas due to limitations of non-line-of-sight (NLOS) conditions. Inertial navigation systems (INS) and vision can realize continuous navigation but suffer from error accumulation. Accordingly, the integration model of multi-GNSS (global navigation satellite system) and PPP-RTK/INS/vision with a cascading Kalman filter and dynamic object removal model was proposed to improve the performance of vehicle navigation in urban areas. Two vehicular tests denoted T01 and T02 were conducted in urban areas to evaluate the navigation performance of the proposed model. T01 was conducted in a relatively open-sky environment and T02 was collected in a GNSS-challenged environment with many obstacles blocking the GNSS signals. The positioning results show that the dynamic object removal model can work well in T02. The results indicate that multi-GNSS PPP-RTK/INS/vision with a cascading Kalman filter can achieve a positioning accuracy of 0.08 m and 0.09 m for T01 in the horizontal and vertical directions and 0.83 m and 0.91 m for T02 in the horizontal and vertical directions, respectively. The accuracy of the velocity and attitude estimations is greatly improved by the introduction of vision.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3