Orthogonal Scattering Model-Based Three-Component Decomposition of Polarimetric SAR Data

Author:

Han Wentao,Fu Haiqiang,Zhu Jianjun,Xie Qinghua,Zhang Shurong

Abstract

New scattering models are constantly emerging to extract the detailed polarization information of ground targets. They contribute to the refined interpretation of Polarimetric Synthetic Aperture Radar (PolSAR) images. However, an increasingly prominent problem lies ahead of model decomposition methods when there are similar scattering models for a decomposition scheme. It is difficult to separate the polarization power of similar scattering mechanisms reasonably and robustly. Therefore, in this paper, we first analyze the necessity of orthogonality between scattering models. Following this, we propose two mutually orthogonal rank-1 scattering models, which can degenerate to mostly current scattering models. The orthogonality and adaptability of scattering models are considered in the model derivation. Simulated PolSAR data, real ALOS-2/PALSAR-2, GF-3, and E-SAR data are selected to validate the proposed method. As shown by the results, first, the proposed method enhances the double-bounce scattering contribution in urban areas and maintains the volume-scattering contribution in vegetation areas because it separates the polarization power of different scattering mechanisms more reasonably. Second, the proposed method is powerful in the robust interpretation of different ground targets, resulting from the orthogonality of scattering models. These two characteristics of orthogonal scattering models are expected to play a positive role in large-scale applications, especially in land-cover classification.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hunan province

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3