Gear Shape Measurement Potential of Laser Triangulation and Confocal-Chromatic Distance Sensors

Author:

Pillarz Marc,von Freyberg AxelORCID,Stöbener DirkORCID,Fischer AndreasORCID

Abstract

The demand for extensive gear shape measurements with single-digit µm uncertainty is growing. Tactile standard gear tests are precise but limited in speed. Recently, faster optical gear shape measurement systems have been examined. Optical gear shape measurements are challenging due to potential deviation sources such as the tilt angles between the surface normal and the sensor axis, the varying surface curvature, and the surface properties. Currently, the full potential of optical gear shape measurement systems is not known. Therefore, laser triangulation and confocal-chromatic gear shape measurements using a lateral scanning position measurement approach are studied. As a result of tooth flank standard measurements, random effects due to surface properties are identified to primarily dominate the achievable gear shape measurement uncertainty. The standard measurement uncertainty with the studied triangulation sensor amounts to >10 µm, which does not meet the requirements. The standard measurement uncertainty with the confocal-chromatic sensor is <6.5 µm. Furthermore, measurements on a spur gear show that multiple reflections do not influence the measurement uncertainty when measuring with the lateral scanning position measurement approach. Although commercial optical sensors are not designed for optical gear shape measurements, standard uncertainties of <10 µm are achievable for example with the applied confocal-chromatic sensor, which indicates the further potential for optical gear shape measurements.

Funder

Deutsche Forschungsgemeinschaft

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference21 articles.

1. ISO1328-1: Cylindrical Gears—ISO System of Flank Tolerance Classification—Part 1: Definitions and Allowable Values of Deviations Relevant to Flanks of Gear Teeth,2013

2. Optical Inspection System for Gear Tooth Surfaces Using a Projection Moiré Method

3. Traceable metrology for large involute gears

4. Recent developments in large-scale dimensional metrology

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3