Abstract
Coal fly ash hollow aluminosilicate microspheres (cenospheres) of stabilized composition (glass phase—95.4; (SiO2/Al2O3)glass—3.1; (Si/Al)at. = 2.6) were used to fabricate lutetium-176 encapsulated aluminosilicate microspheres as precursors of radiolabeled microspheres applied for selective irradiation of tumors. To incorporate Lu3+ ions into cenosphere’s aluminosilicate material, the following strategy was realized: (i) chemical modification of cenosphere globules by conversion of aluminosilicate glass into zeolites preserving a spherical form of cenospheres; (ii) loading of zeolitized microspheres with Lu3+ by means of ion exchange 3Na+ ↔ Lu3+; (iii) Lu3+ encapsulation in an aluminosilicate matrix by solid-phase transformation of the Lu3+ loaded microspheres under thermal treatment at 1273–1473 K. Two types of zeolitized products, such as NaX (FAU) and NaP1 (GIS) bearing microspheres having the specific surface area of 204 and 33 m2/g, accordingly, were prepared and their Lu3+ sorption abilities were studied. As revealed, the Lu3+ sorption capacities of the zeolitized products are about 130 and 70 mg/g Lu3+ for NaX and NaP1 microspheres, respectively. It was found that the long-time heating of the Lu3+-loaded zeolite precursors at 1273 K in a fixed bed resulted in the crystallization of monoclinic Lu2Si2O7 in both zeolite systems, which is a major component of crystalline constituents of the calcined microspheres. The fast heating–cooling cycle at 1473 K in a moving bed resulted in the amorphization of zeolite components in both precursors and softening glass crystalline matter of the NaX-bearing precursor with preserving its spherical form and partial elimination of surface open pores. The NaX-bearing microspheres, compared to NaP1-based precursor, are characterized by uneven Lu distribution over the zeolite-derived layer. The precursor based on gismondin-type zeolite provides a near-uniform Lu distribution and acceptable Lu content (up to 15 mol.% Lu2O3) in the solid phase.
Funder
Russian Science Foundation
Subject
General Materials Science
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献