Study of Material Color Influences on Mechanical Characteristics of Fused Deposition Modeling Parts

Author:

Gao GeORCID,Xu Fan,Xu Jiangmin,Liu Zhenyu

Abstract

The objective of the present work is to evaluate the influence of material color on mechanical properties of fused deposition modeling (FDM) parts. The performance of the products is evaluated by testing eight different colors of acrylonitrile butadiene styrene (ABS) and polylactic acid (PLA) material in terms of tensile strength, compressive strength, and flexural strength. The analysis of data shows a significant difference in mechanical characteristics of prints depending on filament color. For different colors, these three strengths almost follow the same rising and falling tendency. In order to explore the relationship between mechanical strengths and filament colors, the color-mixing theory and the least-squares method are adopted to fit the best ratio coefficients of different color combinations. Results are presented showing that the strength value (e.g., tensile) of the mixed color can be evaluated through that of primary colors by fitting the other strength (e.g., compressive or flexural). It is shown that the predicted value is always no more than 7% error compared with the actual strength, in spite of two-color or three-color mixtures. An additional confirmation test with seven colored PLA filaments from different suppliers was conducted to focus on the extensibility. The outcomes show the maximum fitting errors of strengths for mixed colors in all cases are within 5%, proving the effectiveness and applicability of this predicted approach. This study can bring a detailed analysis that enables better estimation of the function of material color and contributes to improving the property of FDM printed products for consumers by choosing the suitable filament color.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3