Synthesis and Performances of Shrinkage-Reducing Polycarboxylate Superplasticizer in Cement-Based Materials

Author:

Li Shiyu,Liu XiaoORCID,Xu Yurui,Lai Guanghong,Ding Yungchin,Chen Yichen,Xia Chunlei,Wang Ziming,Cui Suping

Abstract

Reducing or eliminating cracks caused by shrinkage of cementitious materials remains a daunting challenge for construction engineers. Drying shrinkage and autogenous shrinkage are the main shrinkage types in the service process of cement-based materials, which have a great impact on engineering applications. If cracks in concrete generate by drying or autogenous shrinkage, the mechanical properties, water resistance and durability of concrete will be also affected. It is an effective method to use chemical admixtures to inhibit the shrinkage of cement-based materials. Polycarboxylate plasticizer (PCE) is an important chemical admixture in cement-based materials and is widely used in practical engineering. It can bring great value by reducing the shrinkage effect through molecular design. Through our innovative design, a series of shrinkage-reducing polycarboxylate superplasticizers (SRPs) were synthesized, their molecular structures were confirmed by Fourier transform infrared spectroscopy (FTIR) and their molecular properties were determined by gel permeation chromatography (GPC). Furthermore, the shrinkage performances at different ages of the mortars containing the synthesized SRPs with different structures were systematically evaluated. The results showed that compared with the blank sample, the dry shrinkage rate and free shrinkage rate of the mortars containing SRP decreased by over 20% and 15%, respectively. Additionally, the shrinkage rates of the mortars containing SRP were significantly lower than that of the mortar containing conventional PCE, and moreover, the water-reducing performance was improved compared to conventional PCE. Based on the experimental results of surface tension and evaporation rate of different SRP solutions, the mechanism of the shrinkage-reducing effect was probed, as expected to provide guidance for the design and development of new shrinkage-reducing admixtures.

Funder

Cooperative Research Project of BJUT-NTUT

State Key Laboratory of Special Functional Waterproof Materials

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3