Label Noise Learning Method for Metallographic Image Recognition of Heat-Resistant Steel for Use in Pressure Equipment

Author:

Shen ZhiyuanORCID,Hu HaijunORCID,Huang Ziyi,Zhang Yu,Wang YafeiORCID,Li Xiufeng

Abstract

In metallographic examination, spherular pearlite gradation, an important step in a metallographic examination, is the main indicator used to assess the reliability of heat-resistant steel. Recognition of pearlite spheroidization via the manual way mainly depends on the subjective perceptions and experience of each inspector. Deep learning-based methods can eliminate the effects of the subjective factors that affect manual recognition. However, images with incorrect labels, known as noisy images, challenge successful application of image recognition of deep learning models to spherular pearlite gradation. A deep-learning-based label noise method for metallographic image recognition is thus proposed to solve this problem. We use a filtering process to pretreat the raw datasets and append a retraining process for deep learning models. The presented method was applied to image recognition for spherular pearlite gradation on a metallographic image dataset which contains 422 images. Meanwhile, three classic deep learning models were also used for image recognition, individually and coupled with the proposed method. Results showed that accuracy of image recognition by a deep learning model solely is lower than the one coupled with our method. Particularly, accuracy of ResNet18 was improved from 72.27% to 77.01%.

Publisher

MDPI AG

Subject

General Materials Science

Reference30 articles.

1. Notice of Safety Status of Chinese Special Equipment State by Market Regulatory Administration in 2020

2. The Gradational Standard of Spherular Pearlite for 15CrMo Steel Used in Fossil Power Plant,2001

3. Automatic Detection of Pearlite Spheroidization Grade of Steel Using Optical Metallography

4. Arcface: Additive angular margin loss for deep face recognition;Deng;Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,2019

5. An End-to-End Steel Surface Defect Detection Approach via Fusing Multiple Hierarchical Features

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Automatic Recognition of Steel Deterioration Grade By CNN;2023 6th International Conference on Electronics Technology (ICET);2023-05-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3