Artificial Neural Networks-Based Prediction of Hardness of Low-Alloy Steels Using Specific Jominy Distance

Author:

Smokvina Hanza SunčanaORCID,Marohnić TeaORCID,Iljkić DarioORCID,Basan RobertORCID

Abstract

Successful prediction of the relevant mechanical properties of steels is of great importance to materials engineering. The aim of this research is to investigate the possibility of reducing the complexity of artificial neural networks-based prediction of total hardness of hypoeutectoid, low-alloy steels based on chemical composition, by introducing the specific Jominy distance as a new input variable. For prediction of total hardness after continuous cooling of steel (output variable), ANNs were developed for different combinations of inputs. Input variables for the first configuration of ANNs were the main alloying elements (C, Si, Mn, Cr, Mo, Ni), the austenitizing temperature, the austenitizing time, and the cooling time to 500 °C, while in the second configuration alloying elements were substituted by the specific Jominy distance. Comparing the results of total hardness prediction, it can be seen that the ANN using the specific Jominy distance as input variable (runseen = 0.873, RMSEunseen = 67, MAPE = 14.8%) is almost as successful as ANN using main alloying elements (runseen = 0.940, RMSEunseen = 46, MAPE = 10.7%). The research results indicate that the prediction of total hardness of steel can be successfully performed only based on four input variables: the austenitizing temperature, the austenitizing time, the cooling time to 500 °C, and the specific Jominy distance.

Funder

Hrvatska Zaklada za Znanost

University of Rijeka

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Reference36 articles.

1. Mechanical Testing;Abbaschian,2003

2. Distortion of Heat-Treated Components;Narazaki,2007

3. Simulation of Quenching;Şimşir,2009

4. Mathematical Modeling and Simulation of Hardness of Quenched and Tempered Steel

5. The determination of yield strength from hardness measurements

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3