Neutron Scattering as a Powerful Tool to Investigate Magnetic Shape Memory Alloys: A Review

Author:

Río-López Natalia A.,Lázpita Patricia,Salazar Daniel,Petrenko Viktor I.ORCID,Plazaola FernandoORCID,Chernenko VolodymyrORCID,Porro Jose M.

Abstract

Magnetic shape memory alloys (MSMAs) are an interesting class of smart materials characterized by undergoing macroscopic deformations upon the application of a pertinent stimulus: temperature, stress and/or external magnetic fields. Since the deformation is rapid and contactless, these materials are being extensively investigated for a plethora of applications, such as sensors and actuators for the medical, automotive and space industries, energy harvesting and damping devices, among others. These materials also exhibit a giant magnetocaloric effect, whereby they are very promising for magnetic refrigeration. The applications in which they can be used are extremely dependent on the material properties, which are, in turn, greatly conditioned by the structure, atomic ordering and magnetism of a material. Particularly, exploring the material structure is essential in order to push forward the current application limitations of the MSMAs. Among the wide range of available characterization tools, neutron scattering techniques stand out in acquiring advanced knowledge about the structure and magnetism of these alloys. Throughout this manuscript, a comprehensive review about the characterization of MSMAs using neutron techniques is presented. Several elastic neutron scattering techniques will be explained and exemplified, covering neutron imaging techniques—such as radiography, tomography and texture diffractometry; diffraction techniques—magnetic (polarized neutron) diffraction, powder neutron diffraction and single crystal neutron diffraction, reflectometry and small angle neutron scattering. This will be complemented with a few examples where inelastic neutron scattering has been employed to obtain information about the phonon dispersion in MSMAs.

Funder

Spanish Ministry of Science, Innovation and Universities

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3