Author:
Redlich Christian,Schauer Antje,Scheibler Jakob,Poehle Georg,Barthel Peggy,Maennel Anita,Adams Volker,Weissgaerber Thomas,Linke Axel,Quadbeck Peter
Abstract
The degradation behavior and biocompatibility of pure molybdenum (Mo) were investigated. Dissolution of powder metallurgically manufactured and commercially available Mo was investigated by ion concentration measurement after immersion in modified Kokubo’s SBF (c-SBF-Ca) for 28 days at 37 °C and pH 7.4. Degradation layers and corrosion attack were examined with optical microscopy and REM/EDX analysis. Furthermore, potentiodynamic polarization measurements were conducted. Mo gradually dissolves in modified SBF releasing molybdate anions (MoO42−). The dissolution rate after 28 days is 10 µm/y for both materials and dissolution accelerates over time. A non-passivating, uniform and slowly soluble degradation product layer is observed. Additionally, apoptosis and necrosis assays with Mo ion extracts and colonization tests with human endothelial (HCAEC) and smooth muscle cell lines (HCASMC) on Mo substrates were performed. No adverse effects on cell viability were observed for concentrations expected from the dissolution of implants with typical geometries and substrates were densely colonized by both cell lines. Furthermore, Mo does not trigger thrombogenic or inflammatory responses. In combination with its favorable mechanical properties and the renal excretion of bio-available molybdate ions, Mo may be an alternative to established bioresorbable metals.
Subject
General Materials Science,Metals and Alloys
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献