AA7075-ZrO2 Nanocomposites Produced by the Consecutive Solid-State Process: A Review of Characterisation and Potential Applications

Author:

Sabbar Huda M.,Leman Zulkiflle,Shamsudin Shazarel B.,Tahir Suraya Mohd,Aiza Jaafar Che N.,Hanim Mohamed A. Azmah,Ismsrrubie Zahari N.,Al-Alimi Sami

Abstract

Solid-state recycling is a direct conversion method for producing metal chips, whereas the materials are plastically deformed into the final product without melting, offering lower energy consumption and metal waste. This technique was reported for fabricating aluminium-zirconium oxide (Al-ZrO2) composite and it was widely used to avoid metal chips bounding at high temperatures during the extrusion process. Aluminium alloy (AA7075) is known for its high yield strength of more than 500 MPa under optimum ageing conditions. However, AA7075 can be further reinforced by zirconium oxide nanoparticles when needed for high-performance applications. Hot extrusion is used to obtain better mechanical properties of composite materials. The equal channel angular pressing (ECAP), a severe plastic deformation technique, was recently used to produce bulk and light recycled metal chips, such as porosity-free and ultra-fine-grained aluminium nanocomposites (ANCs). Heat treatments (HT) and ECAP post hot extrusion are mostly incorporated to improve tribological and mechanical properties and aluminium nanocomposite bonding efficiency. In this review, ANCs’ fabrication by the hot extrusion technique and the effects of ZrO2 nanoparticle are duly summarised and discussed. Furthermore, this review emphasises the importance of using HT and ECAP techniques to acquire better metal alloy incorporation, such as AA7075-ZrO2. Interestingly, owing to the lightweight properties and superior performance of AA7075-ZrO2, it was reported to be suitable for fabricating many drones’ parts, military equipment, and some other promising applications.

Funder

University Putra Malaysia

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3