Study of the Residual Bond Strength between Corroded Steel Bars and Concrete—A Comparison with the Recommendations of Fib Model Code 2010

Author:

Koulouris KonstantinosORCID,Apostolopoulos Charis

Abstract

As is well known, corrosion of steel reinforcement deteriorates the steel–concrete interface and causes concrete cracking, degrading significantly the bond strength. Several experimental studies have investigated the magnitude of residual bond strength due to corrosion, which affects either the function of corrosion-damaged steel bars or the surface crack width in concrete. As a result, linear and exponential correlation relationships have been proposed in order to predict the bond loss due to corrosion. Based on the results of an ongoing experimental campaign on the degradation of bond strength of RC specimens, combined with comparable outcomes from existing literature, this manuscript summarizes a database, comparing with the recommendations of Model Code 2010, to analyze and interpret the corrosion effect on the bond loss and highlights some points that need improvement in the current regulations. As indicated, the density of transverse reinforcement (stirrups spacing) has intense impact on the resulting bond loss due to corrosion. Hence, in order to quantify this aspect, the present manuscript introduces a discretization of confinement levels of RC elements, depending on the stirrups spacing. Based on this, regression analyses of data were conducted to extract fitting curves of bond loss, taking into account the amount of transverse reinforcement and predictive zones of residual bond strength in relationship to either corrosion penetration or surface crack width. Furthermore, the outcomes demonstrate that the corrosion penetration depth is an appropriate assessment tool to correlate the residual bond strength with the corrosion level, whereas the surface crack width on concrete is not yet an effective index, since there is a plethora of factors affecting the crack width. Due to this, more research is needed to improve the current level of knowledge on the surface crack width and link it with the corrosion damage of the steel bar and the residual bond strength due to corrosion.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3