Development of Lightweight Magnesium/Glass Micro Balloon Syntactic Foams Using Microwave Approach with Superior Thermal and Mechanical Properties

Author:

Padnuru Sripathy Akshay,Handjaja Cindy,Manakari VyasarajORCID,Parande GururajORCID,Gupta ManojORCID

Abstract

Magnesium matrix syntactic foams (MgMSFs) are emerging lightweight materials with unique capabilities to exhibit remarkable thermal, acoustic, and mechanical properties. In the current study, lightweight glass micro balloon (GMB)-reinforced Mg syntactic foams were synthesized via the powder metallurgy technique using hybrid microwave sintering. The processing employed in the study yielded MgMSFs with refined grain sizes, no secondary phases, and reasonably uniform distributions of hollow reinforcement particles. The developed MgMSFs exhibited densities 8%, 16%, and 26% lower than that of the pure Mg. The coefficient of thermal expansion reduced (up to 20%) while the ignition resistance improved (up to 20 °C) with the amount of GMB in the magnesium matrix. The MgMSFs also exhibited a progressive increase in hardness with the amount of GMB. Although the MgMSFs showed a decrease in the yield strength with the addition of GMB hollow particles, the ultimate compression strength, fracture strain, and energy absorption capabilities increased noticeably. The best ultimate compression strength at 321 MPa, which was ~26% higher than that of the pure Mg, was displayed by the Mg-5GMB composite, while the Mg-20GMB composite showed the best fracture strain and energy absorption capability, which were higher by ~39 and 65%, respectively, when compared to pure Mg. The specific strength of all composites remained superior to that of monolithic magnesium. Particular efforts were made in the present study to interrelate the processing, microstructural features, and properties of MgMSFs.

Funder

Ministry of Education - Singapore

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Reference57 articles.

1. Magnesium alloys for lightweight powertrains and automotive bodies;Powell,2012

2. Selective Laser Melting of Magnesium and Magnesium Alloy Powders: A Review

3. Effects of particle size on the microstructure and mechanical properties of expanded glass-metal syntactic foams

4. Introduction to Magnesium,2010

5. Introduction to Aerospace Materials;Mouritz,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3