Numerical Simulation of Some Steel Structural Elements with Uncertain Initial Porosity

Author:

Kamiński MarcinORCID,Strąkowski Michał

Abstract

The main research purpose of this work was to study the elasto-plastic responses of some fundamental steel structural elements exhibiting stochastic volumetric microvoids. The constitutive model of the steel material was consistent with the deterministic Gurson–Tvergaard–Needleman (GTN) porous plasticity model, where some of the microvoids parameters have additionally been defined as Gaussian random variables. The iterative stochastic finite element method implemented based on the-tenth order stochastic perturbation technique was utilized in numerical experiments. An interoperability of the computer algebra system MAPLE 2019 and the finite element method system ABAQUS was employed to study the influence of the initial microvoids f0 with uncertainty in the structural steel on the statistical scattering of the resulting stresses and deformations. The basic probabilistic characteristics of the structural response were computed and contrasted with statistical estimators inherent in the Monte–Carlo simulation and also with the results obtained from the semi-analytical probabilistic method. Reliability indices according to the first-order reliability method (FORM) were also calculated. Two numerical illustrations included the (i) tension test of the round cylindrical steel rebar and the (ii) bending test of the steel I-beam restrained at both its ends. Expectations and coefficients of variation of the structural responses confirmed here the importance of the microvoids for the stochastic elasto-plastic behavior of some basic engineering structures, where tensile stress plays an important role in designing procedures.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3