Abstract
Laser cleaning is a competitive alternative to ablate and remove the hard oxide layer on hot-rolled stainless steel. To meet the practical demand, laser-induced breakdown spectroscopy (LIBS) was applied for real-time monitoring of the cleaning process in this study. Furthermore, the as-received and laser cleaned surfaces were characterized by an optical micrograph, an X-ray diffractometer, and a laser scanning confocal microscope. The results showed the relative intensity ratio (RIR) of the FeI emission line at 520.9 nm and the CrI emission line at 589.2 could be a quantitative index to monitor the cleaning process. When the oxide layer was not fully cleaned, the LIBS signals of the substrate were not excited, and the ratio was almost invariant as the power of the laser increased. However, it sharply increased once the oxide layer was effectively cleaned, the cleaned surface was bright, and the surface roughness was smaller in this case. Subsequently, as the surface was over-cleaned with the further increase of laser power, the RIR value remained large. The optimal laser cleaning parameters obtained by the monitoring were determined to avoid re-oxidation and reduce the roughness of the cleaned surface.
Subject
General Materials Science,Metals and Alloys
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献