Abstract
Traditional mechanical properties prediction models are mostly based on experience and mechanism, which neglect the linear and nonlinear relationships between process parameters. Aiming at the high-dimensional data collected in the complex industrial process of steel production, a new prediction model is proposed. The multidimensional support vector regression (MSVR)-based model is combined with the feature selection method, which involves maximum information coefficient (MIC) correlation characterization and complex network clustering. Firstly, MIC is used to measure the correlation between process parameters and mechanical properties, based on which a complex network is constructed and hierarchical clustering is performed. Secondly, we evaluate all parameters and select a representative one for each partition as the input of the subsequent model based on the centrality and influence indicators. Finally, an actual steel production case is used to train the MSVR prediction model. The prediction results show that our proposed framework can capture effective features from the full parameters in terms of higher prediction accuracy and is less time-consuming compared with the Pearson-based subset, full-parameter subset, and empirical subset input. The feature selection method based on MIC can dig out some nonlinear relationships which cannot be found by Pearson coefficient.
Funder
Fundamental Research Funds for the Central Universities
Subject
General Materials Science,Metals and Alloys
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献