Effects of the Heterodimeric Neurotoxic Phospholipase A2 from the Venom of Vipera nikolskii on the Contractility of Rat Papillary Muscles and Thoracic Aortas

Author:

Averin Alexey1ORCID,Starkov Vladislav2,Tsetlin Victor2ORCID,Utkin Yuri2ORCID

Affiliation:

1. Institute of Cell Biophysics, Federal Research Center “Pushchino Scientific Center of Biological Research”, Pushchino Branch, Russian Academy of Sciences, Pushchino 142290, Russia

2. Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia

Abstract

Phospholipases A2 (PLA2s) are a large family of snake toxins manifesting diverse biological effects, which are not always related to phospholipolytic activity. Snake venom PLA2s (svPLA2s) are extracellular proteins with a molecular mass of 13–14 kDa. They are present in venoms in the form of monomers, dimers, and larger oligomers. The cardiovascular system is one of the multiple svPLA2 targets in prey organisms. The results obtained previously on the cardiovascular effects of monomeric svPLA2s were inconsistent, while the data on the dimeric svPLA2 crotoxin from the rattlesnake Crotalus durissus terrificus showed that it significantly reduced the contractile force of guinea pig hearts. Here, we studied the effects of the heterodimeric svPLA2 HDP-1 from the viper Vipera nikolskii on papillary muscle (PM) contractility and the tension of the aortic rings (ARs). HDP-1 is structurally different from crotoxin, and over a wide range of concentrations, it produced a long-term, stable, positive inotropic effect in PMs, which did not turn into contractures at the concentrations studied. This also distinguishes HDP-1 from the monomeric svPLA2s, which at high concentrations inhibited cardiac function. HDP-1, when acting on ARs preconstricted with 10 μM phenylephrine, induced a vasorelaxant effect, similar to some other svPLA2s. These are the first indications of the cardiac and vascular effects of true vipers’ heterodimeric svPLA2s.

Funder

Russian Science Foundation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3