Synthesis, Characterization, and Study of the Antimicrobial Potential of Dimeric Peptides Derived from the C-Terminal Region of Lys49 Phospholipase A2 Homologs

Author:

Bicho Gabriel F. H.1,Nunes Letícia O. C.12ORCID,Fiametti Louise Oliveira12,Argentin Marcela N.3ORCID,Candido Vitória T.3,Camargo Ilana L. B. C.3ORCID,Cilli Eduardo M.1ORCID,Santos-Filho Norival A.12ORCID

Affiliation:

1. Instituto de Química de Araraquara, Universidade Estadual Paulista (UNESP), Av. Prof. Francisco Degni, 55-Jardim Quitandinha, Araraquara 14800-060, SP, Brazil

2. Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista (UNESP), Rodovia Araraquara Jaú, Km 01-s/n-Campos Ville, Araraquara 14800-903, SP, Brazil

3. Instituto de Física de São Carlos, Universidade de São Paulo (USP), Av. João Dagnone, 1100-Jardim Santa Angelina, São Carlos 13563-120, SP, Brazil

Abstract

Currently, the search for new alternatives to conventional antibiotics to combat bacterial resistance is an urgent task, as many microorganisms threaten human health due to increasing bacterial resistance to traditional medicines. Thus, new molecules such as antimicrobial peptides have emerged as promising alternatives because of their low induction of resistance and broad spectrum of action. In this context, in the past few years, our research group has synthesized and characterized a peptide derived from the C-terminal region of the Lys49 PLA2-like BthTX-I, named p-BthTX-I. After several studies, the peptide (p-BthTX-I)2K was proposed as the molecule with the most considerable biotechnological potential. As such, the present work aimed to evaluate whether the modifications made on the peptide (p-BthTX-I)2K can be applied to other molecules originating from the C-terminal region of PLA2-like Lys49 from snake venoms. The peptides were obtained through the solid-phase peptide synthesis technique, and biochemical and functional characterization was carried out using dichroism techniques, mass spectrometry, antimicrobial activity against ESKAPE strains, hemolytic activity, and permeabilization of lipid vesicles. The antimicrobial activity of the peptides was promising, especially for the peptides (p-AppK)2K and (p-ACL)2K, which demonstrated activity against all strains that were tested, surpassing the model molecule (p-BthTX-I)2K in most cases and maintaining low hemolytic activity. The modifications initially proposed for the (p-BthTX-I)2K peptide were shown to apply to other peptides derived from Lys49 PLA2-like from snake venoms, showing promising results for antimicrobial activity. Future assays comparing the activity of the dimers obtained through this strategy with the monomers of these peptides should be carried out.

Funder

São Paulo Research Foundation

Center for Research and Innovation in Biodiversity and New Drugs

Coordination for the Improvement of Higher Education Personnel

National Counsel of Technological and Scientific Development

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3