Data Is the New Oil–Sort of: A View on Why This Comparison Is Misleading and Its Implications for Modern Data Administration

Author:

Stach Christoph1ORCID

Affiliation:

1. Institute for Parallel and Distributed Systems, University of Stuttgart, Universitätsstraße 38, 70569 Stuttgart, Germany

Abstract

Currently, data are often referred to as the oil of the 21st century. This comparison is not only used to express that the resource data are just as important for the fourth industrial revolution as oil was for the technological revolution in the late 19th century. There are also further similarities between these two valuable resources in terms of their handling. Both must first be discovered and extracted from their sources. Then, the raw materials must be cleaned, preprocessed, and stored before they can finally be delivered to consumers. Despite these undeniable similarities, however, there are significant differences between oil and data in all of these processing steps, making data a resource that is considerably more challenging to handle. For instance, data sources, as well as the data themselves, are heterogeneous, which means there is no one-size-fits-all data acquisition solution. Furthermore, data can be distorted by the source or by third parties without being noticed, which affects both quality and usability. Unlike oil, there is also no uniform refinement process for data, as data preparation should be tailored to the subsequent consumers and their intended use cases. With regard to storage, it has to be taken into account that data are not consumed when they are processed or delivered to consumers, which means that the data volume that has to be managed is constantly growing. Finally, data may be subject to special constraints in terms of distribution, which may entail individual delivery plans depending on the customer and their intended purposes. Overall, it can be concluded that innovative approaches are needed for handling the resource data that address these inherent challenges. In this paper, we therefore study and discuss the relevant characteristics of data making them such a challenging resource to handle. In order to enable appropriate data provisioning, we introduce a holistic research concept from data source to data sink that respects the processing requirements of data producers as well as the quality requirements of data consumers and, moreover, ensures a trustworthy data administration.

Publisher

MDPI AG

Subject

Computer Networks and Communications

Reference245 articles.

1. Schwab, K., Marcus, A., Oyola, J.R., Hoffman, W., and Luzi, M. (2023, February 06). Personal Data: The Emergence of a New Asset Class. An Initiative of the World Economic Forum. Available online: https://www.weforum.org/reports/personal-data-emergence-new-asset-class/.

2. Müller, B., and Meyer, G. (2019). Towards User-Centric Transport in Europe: Challenges, Solutions and Collaborations, Springer.

3. Industry 4.0 as a data-driven paradigm: A systematic literature review on technologies;Klingenberg;J. Manuf. Technol. Manag.,2021

4. Industrial Internet of Things: Challenges, Opportunities, and Directions;Sisinni;IEEE Trans. Ind. Inform.,2018

5. Singh, M., Fuenmayor, E., Hinchy, E.P., Qiao, Y., Murray, N., and Devine, D. (2021). Digital Twin: Origin to Future. Appl. Syst. Innov., 4.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3