Abstract
Today, variable flow pattern, which uses static rule curves, is considered one of the challenges of reservoir operation. One way to overcome this problem is to develop forecast-based rule curves. However, managers must have an estimate of the influence of forecast accuracy on operation performance due to the intrinsic limitations of forecast models. This study attempts to develop a forecast model and investigate the effects of the corresponding accuracy on the operation performance of two conventional rule curves. To develop a forecast model, two methods according to autocorrelation and wrapper-based feature selection models are introduced to deal with the wavelet components of inflow. Finally, the operation performances of two polynomial and hedging rule curves are investigated using forecasted and actual inflows. The results of applying the model to the Dez reservoir in Iran visualized that a 4% improvement in the correlation coefficient of the coupled forecast model could reduce the relative deficit of the polynomial rule curve by 8.1%. Moreover, with 2% and 10% improvement in the Willmott and Nash—Sutcliffe indices, the same 8.1% reduction in the relative deficit can be expected. Similar results are observed for hedging rules where increasing forecast accuracy decreased the relative deficit by 15.5%. In general, it was concluded that hedging rule curves are more sensitive to forecast accuracy than polynomial rule curves are.
Funder
Shahid Chamran University of Ahvaz
National Research Foundation of Korea
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献