Convolutional Neural Network-Driven Improvements in Global Cloud Detection for Landsat 8 and Transfer Learning on Sentinel-2 Imagery

Author:

Pang Shulin1ORCID,Sun Lin1,Tian Yanan1,Ma Yutiao1,Wei Jing2ORCID

Affiliation:

1. College of Geodesy and Geomatics, Shandong University of Science and Technology, Qingdao 266590, China

2. Department of Atmospheric and Oceanic Science, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD 20740, USA

Abstract

A stable and reliable cloud detection algorithm is an important step of optical satellite data preprocessing. Existing threshold methods are mostly based on classifying spectral features of isolated individual pixels and do not contain or incorporate the spatial information. This often leads to misclassifications of bright surfaces, such as human-made structures or snow/ice. Multi-temporal methods can alleviate this problem, but cloud-free images of the scene are difficult to obtain. To deal with this issue, we extended four deep-learning Convolutional Neural Network (CNN) models to improve the global cloud detection accuracy for Landsat imagery. The inputs are simplified as all discrete spectral channels from visible to short wave infrared wavelengths through radiometric calibration, and the United States Geological Survey (USGS) global Landsat 8 Biome cloud-cover assessment dataset is randomly divided for model training and validation independently. Experiments demonstrate that the cloud mask of the extended U-net model (i.e., UNmask) yields the best performance among all the models in estimating the cloud amounts (cloud amount difference, CAD = −0.35%) and capturing the cloud distributions (overall accuracy = 94.9%) for Landsat 8 imagery compared with the real validation masks; in particular, it runs fast and only takes about 41 ± 5.5 s for each scene. Our model can also actually detect broken and thin clouds over both dark and bright surfaces (e.g., urban and barren). Last, the UNmask model trained for Landsat 8 imagery is successfully applied in cloud detections for the Sentinel-2 imagery (overall accuracy = 90.1%) via transfer learning. These prove the great potential of our model in future applications such as remote sensing satellite data preprocessing.

Funder

the Introduction plan of high-end foreign experts

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3