RadWet: An Improved and Transferable Mapping of Open Water and Inundated Vegetation Using Sentinel-1

Author:

Oakes Gregory1ORCID,Hardy Andy1ORCID,Bunting Pete1ORCID

Affiliation:

1. Department of Geography and Earth Sciences, Aberystwyth University, Aberystwyth SY23 3DB, UK

Abstract

Mapping the spatial and temporal dynamics of tropical herbaceous wetlands is vital for a wide range of applications. Inundated vegetation can account for over three-quarters of the total inundated area, yet widely used EO mapping approaches are limited to the detection of open water bodies. This paper presents a new wetland mapping approach, RadWet, that automatically defines open water and inundated vegetation training data using a novel mixture of radar, terrain, and optical imagery. Training data samples are then used to classify serial Sentinel-1 radar imagery using an ensemble machine learning classification routine, providing information on the spatial and temporal dynamics of inundation every 12 days at a resolution of 30 m. The approach was evaluated over the period 2017–2022, covering a range of conditions (dry season to wet season) for two sites: (1) the Barotseland Floodplain, Zambia (31,172 km2) and (2) the Upper Rupununi Wetlands in Guyana (11,745 km2). Good agreement was found at both sites using random stratified accuracy assessment data (n = 28,223) with a median overall accuracy of 89% in Barotseland and 80% in the Upper Rupununi, outperforming existing approaches. The results revealed fine-scale hydrological processes driving inundation patterns as well as temporal patterns in seasonal flood pulse timing and magnitude. Inundated vegetation dominated wet season wetland extent, accounting for a mean 80% of total inundation. RadWet offers a new way in which tropical wetlands can be routinely monitored and characterised. This can provide significant benefits for a range of application areas, including flood hazard management, wetland inventories, monitoring natural greenhouse gas emissions and disease vector control.

Funder

Aberystwyth University’s AberDoc Programme

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3