Weakening the Flicker Noise in GPS Vertical Coordinate Time Series Using Hybrid Approaches

Author:

Yang Bing1ORCID,Yang Zhiqiang1,Tian Zhen1,Liang Pei1

Affiliation:

1. College of Geological Engineering and Geomatics, Chang’an University, Xi’an 710054, China

Abstract

Noises in the GPS vertical coordinate time series, mainly including the white and flicker noise, have been proven to impair the accuracy and reliability of GPS products. Various methods were adopted to weaken the white and flicker noises in the GPS time series, such as the complementary ensemble empirical mode decomposition (CEEMD), wavelet denoising (WD), and variational mode decomposition (VMD). However, a single method only works at a limited frequency band of the time series, and the corresponding denoising ability is insufficient, especially for the flicker noise. Hence, in this study, we try to build two combined methods: CEEMD & WD and VMD & WD, to weaken the flicker noise in the GPS positioning time series from the Crustal Movement Observation Network of China. First, we handled the original signal using CEEMD or VMD with the appropriate parameters. Then, the processed signal was further denoised by WD. The results show that the average flicker noise in the time series was reduced from 19.90 mm/year0.25 to 2.8 mm/year0.25. This relates to a reduction of 86% after applying the two methods to process the GPS data, which indicates our solutions outperform CEEMD by 6.84% and VMD by 16.88% in weakening the flicker noise, respectively. Those apparent decreases in the flicker noises for the two combined methods are attributed to the differences in the frequencies between the WD and the other two methods, which were verified by analyzing the power spectrum density (PSD). With the help of WD, CEEMD & WD and VMD & WD can identify more flicker noise hidden in the low-frequency signals obtained by CEEMD and VMD. Finally, we found that the two combined methods have almost identical effects on removing the flicker noise in the time series for 226 GPS stations in China, testified by the Wilcoxon rank sum test.

Funder

Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3