Abstract
In order to systematically analyze the benefits of transit metropolis construction, the system dynamics (SD) theory was used to construct the transit metropolis SD simulation model from the four subsystems of economy, society, environment, and transportation supply and demand. The validity of the SD model was verified by the social and economic data of Nanchang City and the operational data of the bus company, and the quantitative simulation analysis was carried out by taking the construction of the transit metropolis in Nanchang as an example. The simulation results show that, in 2020, the number of motor vehicles in Nanchang will reach 1.13 million and the urban population will reach 5.71 million. It is necessary to build a transit metropolis for the sustainable development of urban transportation. In order to complete the transit metropolis creation goal of 60% of the public transit mobility sharing rate, the proportion of public transport investment in the total transportation investment needs to be adjusted from 0.25 to 0.35. As a result, Nanchang City will improve after the peak traffic congestion in 2022, indicating that the construction of the transit metropolis will have a positive effect on Nanchang. By developing new energy vehicles and low-emission vehicles, vehicle emissions will drop from 0.05 tons/year to 0.04 tons/year, and overall nitrogen oxide emissions will fall by 70%, which is significant for urban environments. The research results provide theoretical support for the significance of transit metropolis construction, and promote the sustainable development of urban transportation.
Funder
the National Natural Science Foundation of China
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献