Extending the Adapted PageRank Algorithm Centrality to Multiplex Networks with Data Using the PageRank Two-Layer Approach

Author:

Agryzkov Taras,Curado Manuel,Pedroche Francisco,Tortosa Leandro,Vicent José

Abstract

Usually, the nodes’ interactions in many complex networks need a more accurate mapping than simple links. For instance, in social networks, it may be possible to consider different relationships between people. This implies the use of different layers where the nodes are preserved and the relationships are diverse, that is, multiplex networks or biplex networks, for two layers. One major issue in complex networks is the centrality, which aims to classify the most relevant elements in a given system. One of these classic measures of centrality is based on the PageRank classification vector used initially in the Google search engine to order web pages. The PageRank model may be understood as a two-layer network where one layer represents the topology of the network and the other layer is related to teleportation between the nodes. This approach may be extended to define a centrality index for multiplex networks based on the PageRank vector concept. On the other hand, the adapted PageRank algorithm (APA) centrality constitutes a model to obtain the importance of the nodes in a spatial network with the presence of data (both real and virtual). Following the idea of the two-layer approach for PageRank centrality, we can consider the APA centrality under the perspective of a two-layer network where, on the one hand, we keep maintaining the layer of the topological connections of the nodes and, on the other hand, we consider a data layer associated with the network. Following a similar reasoning, we are able to extend the APA model to spatial networks with different layers. The aim of this paper is to propose a centrality measure for biplex networks that extends the adapted PageRank algorithm centrality for spatial networks with data to the PageRank two-layer approach. Finally, we show an example where the ability to analyze data referring to a group of people from different aspects and using different sets of independent data are revealed.

Funder

Ministerio de Economía, Industria y Competitividad, Gobierno de España

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Reference39 articles.

1. Networks: An Introduction;Newman,2010

2. Modern Graph Theory;Bollobas,1998

3. Power-Law Distributions in Empirical Data

4. Small-world network

5. Complex networks: Structure and dynamics

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3