Multiphysics Simulation of Crosstalk Effect in Resistive Random Access Memory with Different Metal Oxides

Author:

Xie HaoORCID,Hu Jun,Wang Zhili,Hu Xiaohui,Liu Hong,Qi WeiORCID,Zhang ShuoORCID

Abstract

Based on the electrical conductivity model built for graphene oxide, the thermal crosstalk effects of resistive random access memory (RRAM) with graphene electrode and Pt electrode are simulated and compared. The thermal crosstalk effects of Pt-RRAM with different metal oxides of TiOx, NiOx, HfOx, and ZrOx are further simulated and compared to guide its compatibility design. In the Pt-RRAM array, the distributions of oxygen vacancy density and temperature are obtained, and the minimum spacing between adjacent conduction filaments to avoid device operation failure is discussed. The abovementioned four metal oxides have different physical parameters such as diffusivity, electrical conductivity, and thermal conductivity, from which the characters of the RRAMs based on one of the oxides are analyzed. Numerical results reveal that thermal crosstalk effects are severe as the spacing between adjacent conduction filaments is small, even leading to the change of logic state and device failure.

Funder

the Zhejiang Provincial Natural Science Foundation of China

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3