Investigation of the Contact Characteristics of Silicon–Gold in an Anodic Bonding Structure

Author:

Zhang Lin,Cao Kaicong,Ran Longqi,Yu Huijun,Zhou WuORCID

Abstract

Anodic bonding is broadly utilized to realize the structure support and electrical connection in the process of fabrication and packaging of MEMS devices, and the mechanical and electrical characteristics of the bonded interface of structure exhibit a significant impact on the stability and reliability of devices. For the anodic bonding structure, including the gold electrode of micro accelerometers, the elastic/plastic contact model of a gold–silicon rough surface is established based on Hertz contact theory to gain the contact area and force of Gauss surface bonding. The trans-scale finite element model of a silicon–gold glass structure is built in Workbench through the reconstruction of Gauss surface net by the reverse engineering technique. The translation load is added to mimic the process of contact to acquire the contact behaviors through the coupling of mechanical and electrical fields, and then the change law of contact resistance is obtained. Finally, the measurement shows a good agreement between the experimental results, theoretical analysis and simulation, which indicates there is almost no change of resistance when the surface gap is less than 20 nm and the resistance is less than 5Ω, while the resistance changes rapidly after the gap exceeds 20 nm.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3