Subpopulations of Organoid-Forming Cells Have Different Motility

Author:

Gomez Jimenez David,Carreira Santos Sofia,Greiff Lennart,Alm KerstiORCID,Lindstedt Malin

Abstract

Cancer stem cells from oropharyngeal squamous cell carcinoma (OPSCC) have the ability to self-renew and differentiate into heterogeneous three-dimensional structures carrying features of tumor cells. Here, we describe a simple and label-free method for generating tumor organoids, and imaging them using live digital holographic microscopy (DHM) on the basis of the phase shift caused by light passing through the cells. We show early events of cell aggregation during tumor-organoid formation, and display their heterogeneity in terms of optical parameters up to an optical volume of 105 µm3. Lastly, by sorting OPSCC epithelial cells, we demonstrate that CD44+ cells displayed greater motility and tumor-forming capacity than those of CD44− cells. These results were in line with previous reports highlighting increased invasive and tumorigenic potential in tumor cells expressing high levels of CD44. Our method provides insight into the formation of tumor organoids, and could be used to assess stemness-associated biomarkers and drug screenings on the basis of tumor organoids.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3