A Study on the Power Generation Prediction Model Considering Environmental Characteristics of Floating Photovoltaic System

Author:

Jeong Han Sang,Choi JaehoORCID,Lee Ho Hyun,Jo Hyun SikORCID

Abstract

The main contents of this paper are to verify the environmental factors affecting the power generation of floating photovoltaic systems and to present the power generation prediction model considering environmental factors by using regression analysis and neural networks studied during the last decade. This study focused on a comparative analysis of which model is best suited for the power generation prediction of the floating photovoltaic (PV) system. To compare the power generation characteristics of a floating and a land-based PV system, two identical 2.5 kW PV systems were installed—one on the water surface in the Boryeong Dam, Korea, and the other nearby on dry land—and their performances were compared. The solar irradiance of the floating PV system was 1.1% lower than that of the land-based PV. Nevertheless, the floating PV module temperature was 4.9% lower than that of the land-based PV, generating approximately 3% more power. Using the correlation analysis of data mining techniques, environmental factors affecting the efficiency of the floating PV system were investigated. The correlation coefficient between the module temperature and water temperature was r = 0.6317 which proves that the high efficiency and low module temperature characteristics of the floating PV system, when compared with that of the land-based PV, are due to the water evaporation effect. Considering environmental factors, power-generation prediction models based on regression analysis and neural networks are presented, and their accuracies are compared. This comparison confirms that the accuracy of the power generation prediction model using neural networks was approximately 2.59% higher than that of the regression analysis method. As a result of adjusting the hidden nodes in the neural network algorithm, it was confirmed that a neural network algorithm with ten hidden nodes was most suitable for calculating the amount of power generation.

Funder

Korea Institute of Energy Technology Evaluation and Planning

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference27 articles.

1. Renewable Energy Market Analysis: GCC 2019 https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2019/Jan/IRENA_Market_Analysis_GCC_2019.pdf

2. Global Market Outlook for Solar Power/2018–2022 https://www.solarpowereurope.org/global-market-outlook-2018-2022/

3. ArrayExpress—A Database of Functional Genomics Experiments http://www.ebi.ac.uk/arrayexpress/

4. Floating Solar Market Report https://img.saurenergy.com/2019/06/floating-solar-market-report-executive-summary.pdf

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3